NAG Toolbox for MATLAB

f07ve

1 Purpose

f07ve solves a real triangular band system of linear equations with multiple right-hand sides, AX = B or $A^{T}X = B$.

2 Syntax

```
[b, info] = f07ve(uplo, trans, diag, kd, ab, b, 'n', n, 'nrhs_p', nrhs_p)
```

3 Description

f07ve solves a real triangular band system of linear equations AX = B or $A^{T}X = B$.

4 References

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Higham N J 1989 The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252-1265

5 Parameters

5.1 Compulsory Input Parameters

1: uplo – string

Indicates whether A is upper or lower triangular.

$$uplo = 'U'$$

A is upper triangular.

$$uplo = 'L'$$

A is lower triangular.

Constraint: uplo = 'U' or 'L'.

2: trans - string

Indicates the form of the equations.

$$trans = 'N'$$

The equations are of the form AX = B.

$$trans = 'T' \text{ or 'C'}$$

The equations are of the form $A^{T}X = B$.

Constraint: trans = 'N', 'T' or 'C'.

3: diag – string

Indicates whether A is a nonunit or unit triangular matrix.

[NP3663/21] f07ve.1

f07ve NAG Toolbox Manual

```
diag = 'N'
```

A is a nonunit triangular matrix.

diag = 'U'

A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be 1.

Constraint: diag = 'N' or 'U'.

4: kd – int32 scalar

 k_d , the number of superdiagonals of the matrix A if $\mathbf{uplo} = 'U'$, or the number of subdiagonals if $\mathbf{uplo} = 'L'$.

Constraint: $\mathbf{kd} \geq 0$.

5: ab(ldab,*) - double array

The first dimension of the array **ab** must be at least $\mathbf{kd} + 1$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The n by n triangular band matrix A.

The matrix is stored in rows 1 to $k_d + 1$, more precisely,

if **uplo** = 'U', the elements of the upper triangle of A within the band must be stored with element A_{ij} in $\mathbf{ab}(k_d+1+i-j,j)$ for $\max(1j-k_d) \le i \le j$;

if **uplo** = 'L', the elements of the lower triangle of A within the band must be stored with element A_{ij} in $\mathbf{ab}(1+i-j,j)$ for $j \le i \le \min(nj+k_d)$.

If diag = 'U', the diagonal elements of A are assumed to be 1, and are not referenced.

6: b(ldb,*) - double array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs p)

The n by r right-hand side matrix B.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The second dimension of the array ab.

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

2: nrhs_p - int32 scalar

Default: The second dimension of the array b.

r, the number of right-hand sides.

Constraint: $\mathbf{nrhs}_{\mathbf{p}} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

ldab, ldb

f07ve.2 [NP3663/21]

5.4 Output Parameters

1: b(ldb,*) - double array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs p)

The n by r solution matrix X.

2: info - int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

info = -i

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info > 0

If **info** = i, a(i, i) is exactly zero; A is singular and the solution has not been computed.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham 1989.

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations (A + E)x = b, where

$$|E| \leq c(k)\epsilon |A|,$$

c(k) is a modest linear function of k, and ϵ is the machine precision.

If \hat{x} is the true solution, then the computed solution x satisfies a forward error bound of the form

$$\frac{\|x - \hat{x}\|_{\infty}}{\|x\|_{\infty}} \le c(k)\operatorname{cond}(A, x)\epsilon, \qquad \operatorname{provided} \qquad c(k)\operatorname{cond}(A, x)\epsilon < 1,$$

where $cond(A, x) = ||A^{-1}||A||x||_{\infty}/||x||_{\infty}.$

Note that $\operatorname{cond}(A, x) \leq \operatorname{cond}(A) = \||A^{-1}||A|\|_{\infty} \leq \kappa_{\infty}(A)$; $\operatorname{cond}(A, x)$ can be much smaller than $\operatorname{cond}(A)$ and it is also possible for $\operatorname{cond}(A^{\mathrm{T}})$ to be much larger (or smaller) than $\operatorname{cond}(A)$.

Forward and backward error bounds can be computed by calling f07vh, and an estimate for $\kappa_{\infty}(A)$ can be obtained by calling f07vg with **norm** $\mathbf{p} = 'I'$.

8 Further Comments

The total number of floating-point operations is approximately 2nkr if $k \ll n$.

The complex analogue of this function is f07vs.

[NP3663/21] f07ve.3

f07ve NAG Toolbox Manual

9 Example

f07ve.4 (last) [NP3663/21]